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Binary Trees in Haskell 

 

 

• Cf Coq: 

data Tree a = Leaf a | Branch (Tree a) (Tree a) 

  deriving (Eq,Show) 

Inductive tree (A:Set) : Set := 

  | leaf   : A -> tree A 

  | branch : tree A -> tree A -> tree A    

t = Branch (Leaf “a”) 

      (Branch (Leaf “b”) 

    (Leaf “c”)) 

”a” 

”b” ”c” 



Mapping over Trees 

 

 

 

 

 

 

• Tree is a functor! 

treeMap f (Leaf a)     = Leaf (f a) 

treeMap f (Branch l r) =  

  Branch (treeMap f l) (treeMap f r) 

treeMap toUppers t 
Branch (Leaf "A")  

       (Branch (Leaf "B")  

               (Leaf "C")) 

 

treeMap :: (t -> a) -> Tree t -> Tree a 



Functors in Haskell 

 class Functor f where 

  fmap :: (a -> b) -> f a -> f b 

instance Functor Tree where 

  fmap f (Leaf a) = Leaf (f a) 

  fmap f (Branch l r) = Branch (fmap f l) (fmap f r) 

fmap toUppers t 
Branch (Leaf "A")  

       (Branch (Leaf "B")  

               (Leaf "C")) 

 



Label Nodes with DFO Index 

 

”a” 

”b” ”c” 

 1 

 2  3 

number (Leaf a) = Leaf (tick ()) 

number (Branch l r) = Branch (number l) (number r) 

number (Leaf a) s = (Leaf s,s+1) 

number (Branch l r) s = 

  let (l',s')  = number l s 

      (r',s'') = number r s' 

  in (Branch l' r',s'') 

Error prone 



Zipping Trees 

zipTree :: Tree a -> Tree b -> Tree (a,b) 

”a” 

”b” ”c” 

 1 

 2  3 

(1,”a”) 

(2,”b”) (3,”c”) 

zipTree (Leaf a) (Leaf b) =  

  Leaf (a,b) 

zipTree (Branch l r) (Branch l' r') = 

  Branch (zipTree l l') (zipTree r r') 



… catch (zipTree t1 t2) … 

BUT what if… 

• Easy to solve: 

*Lecture1> zipTree (Leaf "a") (Branch (Leaf "b") (Leaf "c")) 

*** Exception: Lecture1.hs:(31,1)-(32,74): Non-exhaustive 

patterns in function zipTree 

zipTree (Leaf a) (Leaf b) =  

  Leaf (a,b) 

zipTree (Branch l r) (Branch l' r') = 

  Branch (zipTree l l') (zipTree r r') 

zipTree _ _ = throw TreesOfDifferentShape 



Modelling Exceptions 

 data Maybe a = Nothing | Just a 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  Just (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  case zipTree l l' of 

    Nothing -> Nothing 

    Just l'' -> 

      case zipTree r r' of 

        Nothing -> Nothing 

   Just r'' -> 

     Just (Branch l'' r'') 

zipTree _ _ = Nothing 



Effect Envy 

Do we need to use effects to write 
modular code?? 



Let’s examine the code… 

 zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  Just (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  case zipTree l l' of 

    Nothing -> Nothing 

    Just l'' -> 

      case zipTree r r' of 

        Nothing -> Nothing 

   Just r'' -> 

     Just (Branch l'' r'') 

zipTree _ _ = Nothing 

This is how we return a 
value:  

Just <expr> 

This is how we use a 
value 



Let’s abstract the common parts 

Just (Leaf (a,b)) 

 

Just x 

 

return x = Just x 

 

return :: a -> Maybe a 

case zipTree l l' of 

  Nothing  -> Nothing 

  Just l'' -> … 

 

case x of 

  Nothing  -> Nothing 

  Just l'' -> f l'' 

 

x >>= f = 

  case x of 

    Nothing  -> Nothing 

    Just l'' -> f l'' 

 

(>>=) :: Maybe a -> 

    (a -> Maybe b) -> 

        Maybe b 

”bind” 

”use x in f” 



zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  Just (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  case zipTree l l' of 

    Nothing -> Nothing 

    Just l'' -> 

      case zipTree r r' of 

        Nothing -> Nothing 

   Just r'' -> 

     Just (Branch l'' r'') 

zipTree _ _ = Nothing 

Revisiting the code 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  case zipTree l l' of 

    Nothing -> Nothing 

    Just l'' -> 

      case zipTree r r' of 

        Nothing -> Nothing 

   Just r'' -> 

     return (Branch l'' r'') 

zipTree _ _ = Nothing 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

       zipTree l l' >>= 

      

        \l'' -> 

      case zipTree r r' of 

        Nothing -> Nothing 

   Just r'' -> 

     return (Branch l'' r'') 

zipTree _ _ = Nothing 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

       zipTree l l' >>= 

      

        \l'' -> 

           zipTree r r' >>= 

          

       \r'' -> 

     return (Branch l'' r'') 

zipTree _ _ = Nothing 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  zipTree l l' >>= \l'' -> 

  zipTree r r' >>= \r'' -> 

  return (Branch l'' r'') 

zipTree _ _ = Nothing 

 

 

 

 



Back to node numbering… 

 number (Leaf a) s = (Leaf s,s+1) 

number (Branch l r) s = 

  let (l',s')  = number l s 

      (r',s'') = number r s' 

  in (Branch l' r',s'') 

This is how we return a 
value 

This is how we use a 
value 

return x s = (x,s) 

 

return x  = \s -> (x,s) 

  

return x  = \s -> (x,s) 

(x >>= f) = \s -> let (a,s’) = x s in f a s’ 



Node numbering revisited 

 

number (Branch l r) = number l >>= \l’ -> 

                      number r >>= \r’ -> 

                      return (Branch l’ r’)  

 

number (Leaf a) = tick >>= \s -> 

                  return (Leaf s) 

 

tick s = (s,s+1) 

number (Leaf a) s = (Leaf s,s+1) 

number (Branch l r) s = 

  let (l',s')  = number l s 

      (r',s'') = number r s' 

  in (Branch l' r',s'') 

Apart from in tick… 

…all the nasty state 
manipulation is 

gone 



What are the types? 

return x  = \s -> (x,s) 

(x >>= f) = \s -> let (a,s’) = x s in f a s’ 

return :: a -> s -> (a,s) 

(>>=)  :: (s -> (a,s)) -> 

     (a -> s -> (b,s)) -> 

     s -> (b,s) 

 

type State s a = s -> (a,s) 

 

return :: a -> State s a 

(>>=)  :: State s a -> (a -> State s b) -> State s b 

Compare to: 
return :: a -> Maybe   a 

(>>=)  :: Maybe   a -> (a -> Maybe   b) -> Maybe   b 



The Common Pattern 

 

 

 

 

 

• m a is a computation delivering type a 

• return converts a value into a computation 

• (>>=) sequences two computations 

class Monad m where 

  return :: a -> m a 

  (>>=)  :: m a -> (a -> m b) -> m b 

instance Monad Maybe where … 

instance Monad (State s) where … 



Example: Random Generation 

• Programs using randomness must pass around 
a seed: 

 next  :: StdGen -> (Int,StdGen) 

split :: StdGen -> (StdGen,StdGen) 

randomInt bound seed = 

  let (n,seed') = next seed in n `mod` bound 

randomPair randomFst randomSnd seed = 

  let (seed1,seed2) = split seed in 

    (randomFst seed1, randomSnd seed2) 

No need to 
return a 

new seed… 

…if we give 
each 

generator its 
own seed 

e.g. randomPair (randomInt 3) (randomInt 3) s1 
  (2,1) 



A Random List Generator 

 randomList randomEl seed = 

  let (seed1,seed2) = split seed in 

  case randomInt 5 seed1 of 

    0 -> [] 

    _ -> 

      let (seed3,seed4) = split seed2 in 

      randomEl seed3 : randomList randomEl seed4 



A Random Monad 

 type Random a = StdGen -> a 

instance Monad Random where 

  return a = \seed -> a 

  x >>= f  = \seed -> 

               let (seed1,seed2) = split seed 

         a             = x seed1 

     in f a seed2) 

generate :: Random Int 

generate = \seed -> fst (next seed) 



generate :: Random Int 

generate = \seed -> fst (next seed) 

instance Monad Random where 

  return a = \seed -> a 

  x >>= f  = \seed -> 

               let (seed1,seed2) = split seed 

         a             = x seed1 

     in f a seed2) 

A Random Monad 

 newtype Random a =  
  MkRandom {unRandom :: StdGen -> a} 

Constructor Destructor 

instance Monad Random where 

  return a = MkRandom (\seed -> a) 

  x >>= f  = MkRandom (\seed -> 

               let (seed1,seed2) = split seed 

         a             = unRandom x seed1 

     in unRandom (f a) seed2) 

generate :: Random Int 

generate = MkRandom (\seed -> fst (next seed)) 



Random Lists Revisited 

 randomList randomEl seed = 

  let (seed1,seed2) = split seed in 

  case randomInt 5 seed1 of 

    0 -> [] 

    _ -> 

      let (seed3,seed4) = split seed2 in 

      randomEl seed3 : randomList randomEl seed4 

randomList randomEl = 

  randomInt 5 >>= \n -> 

  case n of  

    0 -> return [] 

    _ -> randomEl            >>= \x -> 

         randomList randomEl >>= \xs -> 

         return (x:xs) 

This is (almost) 
the Gen monad 
in QuickCheck 



Example: Changing the World 

• Wouldn’t it be great if we could change the 
world with functional programs? 

 

– A really nice way to express I/O 

 

• There’s a problem: 

putStr :: String -> World -> World 

let w1 = first_method world 

    w2 = second_method world 

in if nicer w1 w2 then w1 else w2 

Can’t duplicate 
the real world 

Can’t discard 
the real world 

We need to enforce linearity! 



The IO Monad: Enforcing Linearity 

 

 

• This is a monad, just like State s earlier 

– return and >>= use the world linearly 

 

• The IO type is abstract 

– IO a can only be built from IO primitives… 

– …which use the world linearly 

– You can’t ”get rid of that pesky IO type” 

newtype IO a = MkIO (World -> (a,World)) 

All IO a 
computations 
use the World 

linearly 

Haskell main 
programs are IO 

computations 

The programmer 
cannot call a 

World-> fun… but 
the RTS can, then 

updates the World 



:= 

I’m referentially 
transparent! You 

ain’t got nuthin on 
me—it was the run-

time system wot 
dun it! 



The Big Picture 

class Monad 
return 

>>= 

State: tick 

Maybe: Nothing 

Random: generate 

IO: putStr …
 Common 

operations 
Special 

operations 



What’s the advantage of common 
plumbing? 

 

• Libraries that work with all monads 

 

• Syntactic support 



Libraries: Control.Monad 

• For example: 
liftM2 :: Monad m => (a->b->c) -> m a -> m b -> m c 

liftM2 f ma mb = 

  ma >>= \a -> 

  mb >>= \b -> 

  return (f a b) 

liftM :: Monad m => (a->b) -> m a -> m b 

sequence :: Monad m => [m a] -> m [a] 

sequence = foldr (liftM2 (:)) (return []) 

A monad is a 
functor  



Syntactic Support 

• Instead of 

 

 

• We write 

ma >>= \a -> 

mb >>= \b -> 

return (f a b) 

do a <- ma 

   b <- mb 

   return (f a b) 



Rewriting do 

do pat <- expr 

   block 

expr >>= \pat -> 

do block 

do expr 

   block 

expr >>= \_ -> 

do block 

do expr expr 



Revisiting zipTree… again 

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b)) 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l' r') = 

  zipTree l l' >>= \l'' -> 

  zipTree r r' >>= \r'' -> 

  return (Branch l'' r'') 

zipTree _ _ = Nothing 

zipTree (Leaf a) (Leaf b) =  

  return (Leaf (a,b)) 

zipTree (Branch l r) (Branch l’ r’) = 

  liftM2 Branch (zipTree l l’) (zipTree r r’) 

zipTree _ _ = Nothing 



Revisiting node numbering… again 

 number (Branch l r) = number l >>= \l’ -> 

                      number r >>= \r’ -> 

                      return (Branch l’ r’)  

number (Leaf a) = tick >>= \s -> 

                  return (Leaf s) 

number (Branch l r) =  

  liftM2 Branch (number l) (number r) 

number (Leaf a) =  

  liftM Leaf tick 



”Associative” do-notation begs the 
question… 

do x <- e1 

   y <- e2 

   e3 

do x <- e1 

   do y <- e2 

      e3 

do y <- do x <- e1 

           e2 

   e3 

= 

=? 



What about return? 

 
do x <- e 

   return x 

e 

do y <- return x 

   f y 

f x =? 

=? 



The Monad Laws 

• After desugaring: 

 

 

 

 

• Do they hold for our monads?? 

return x >>= f 

m >>= return 

(m >>= f) >>= g 

f x 

m 

m >>= \x -> f x >>= g 

== 

== 

== 



NO!!! 

• E.g. for State s 

return x >>= |  

== 

\s -> let (x’,s’) = return x s in | x’ s’ 

== 

\s -> | x s 

== 

\s -> | 

/= 
| 

== 

| x  



NO!!! 

• For Random 

randomInt 5 

randomInt 5 >>= return 

Use different 
seeds to 

generate the 
Int! 



Yes… near enough 

 

• For total values 

– (Fast and loose reasoning is morally correct) 

 

• Up to a reasonable equivalence 

– Same distribution in the case of Random 

 



Testing the Monad Laws 

• Let’s use QuickCheck to test our monads! 

• QuickCheck tests properties written as 
monomorphic functions 

 

 

• QuickCheck tests using random arguments 

 

 

prop_Rev, prop_RevRev :: [Integer] -> Bool 

prop_Rev xs    = reverse xs == xs 

prop_RevRev xs = reverse (reverse xs) == xs 

*Lecture1> quickCheck prop_RevRev 

+++ OK, passed 100 tests. 

*Lecture1> quickCheck prop_Rev 

*** Failed! Falsifiable (after 4 tests and 2 shrinks):   

[0,1] 



QuickCheck Constraints 

• Property arguments must be 

– In class Arbitrary (can be generated) 

 

 

– In class Show (can be printed) 

• Functions are not printable, but QuickCheck 
Fun values are, and contain a function 

class Arbitrary a where 

  arbitrary :: Gen a 

Fun _ f :: Fun a b 



The Monad Laws as Properties 

• We state generic laws… 

 

 

 

• …and test particular instances 

prop_LeftUnit x (Fun _ f) =  

  (return x >>= f) == f x 

prop_RightUnit m = 

  (m >>= return) == m 

prop_Assoc m (Fun _ f) (Fun _ g) = 

  ((m >>= f) >>= g) == (m >>= \x -> f x >>= g) 

prop_MaybeAssoc :: Maybe Integer -> 

         Fun Integer (Maybe Integer) -> 

         Fun Integer (Maybe Integer) -> 

         Bool 

prop_MaybeAssoc = prop_Assoc 



Testing 

• Of course, the tests pass 

 

 

• But if we swap f and g on one side of 
prop_Assoc, to get a property that is false… 

*MonadLaws> quickCheck prop_MaybeAssoc 

+++ OK, passed 100 tests. 

*MonadLaws> quickCheck prop_MaybeAssoc 

*** Failed! Falsifiable (after 8 tests and 11 shrinks):   

Just 0 

{_->Just 0} 

{_->Just 1} 

f 

g 



Exercises 

 


