Monads and all that...
l. Monads

John Hughes
Chalmers University/Quviq AB

Binary Trees in Haskell

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Show)

e Cf Coq:
Inductive tree (A:Set) : Set :=
| leaf : A -> tree A

| branch : tree A -> tree A -> tree A

t = Branch (Leaf “a”) N
(Branch (Leaf “b”) d
(Leaf \\CII))

V4 b” n_»n

Mapping over Trees

treeMap f (Leaf a) = Leaf (f a)
treeMap £ (Branch 1 r) =
Branch (treeMap f 1) (treeMap f r)

Branch (Leaf "A")
treeMap toUppers t # (Branch (Leaf "B")
(Leaf "C"))

treeMap :: (t -> a) -> Tree t -> Tree a

e Tree is a functor!

Functors in Haskell

class Functor f where
fmap :: (a ->b) ->f a ->fb

instance Functor Tree where
fmap f (Leaf a) = Leaf (f a)
fmap £f (Branch 1 r) = Branch (fmap f 1) (fmap f r)

Branch (Leaf "A")

fmap toUppers t # (Branch (Leaf "B")
(Leaf "C"))

Label Nodes with DFO Index

” 3 ” # 1

” b" HC” 2 3

number (Leaf a) = Leaf |(tick ())
number (Branch 1 r) = Branch (number 1) (number r)

number (Leaf a) s = (Leaf s,s+1l)
number (Branch 1 r) s = } <
let (1',s') number 1 s |

(r',S' l)

number:r!!l
in (Branch 1' r',6s'' /“:).\

Error prone

Zipping Trees

zipTree :: Tree a -> Tree b -> Tree (a,b)

. o » (173")

2 3 Ilb” ” 7 (2 ”b”) (3) ”)

zipTree (Leaf a) (Leaf b) =
Leaf (a,b)

zipTree (Branch 1l r) (Branch 1' r') =
Branch (zipTree 1 1') (zipTree r r')

BUT what if...

*Lecturel> zipTree (Leaf "a") (Branch (Leaf "b") (Leaf "c"))
*** Exception: Lecturel.hs: (31,1)-(32,74): Non-exhaustive
patterns in function zipTree

e Easy to solve:

zipTree (Leaf a) (Leaf b) =
Leaf (a,b)
zipTree (Branch 1 r) (Branch 1' r') =
Branch (zipTree 1 1') (zipTree r r')
zipTree = l reesOfDifferentShape

...(zipTree tl t2)

Modelling Exceptions

data Maybe a = Nothing | Just a

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))
zipTree (Leaf a) (Leaf b) =
Just (Leaf (a,b))
zipTree (Branch 1 r) (Branch 1' r') =
case zipTree 1 1' of
Nothing -> Nothing

Just 1'' ->
case zipTree r r' of } <
Nothing -> Nothing

Just r'' ->
Just (Branch 1'' r''") /‘(I)‘\

zipTree = Nothing

Effect Envy

Do we need to use effects to write
modular code??

Let’s examine the code...

_ This is how we return a
zipTree :: Tree a -> Tree b -> Me

zipTree (Leaf a) (Leaf b) = value:

Just (Leaf (a,b)) Just <expr>

zipTree (Branch 1 r) (Branch 1' r') =

SEEE APINEED L LY @
Nothing -> Nothing
1r s value
case zipTree r r' of
Nothing -> Nothing
Just r'' ->

Just (Branch 1'' r''
zipTree = Nothing

Let’s abstract the common parts

Just (Leaf (a,b)) case zipTree 1 1' of
Nothing -> Nothing
Just x Just 1'' -> ..
return x = Just x case x of
Nothing -> Nothing
return :: a -> Maybe a Just 1'' -> £ 1"'

X >>= f =
case x of

Just 1'' -> £ 1''

(>>=) :: Maybe a ->

(a -> Maybe Db)

Maybe b

Nothing -> Nothing

->

Revisiting the code

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))
zipTree (Leaf a) (Leaf b) =

return (Leaf (a,b))
zipTree (Branch 1 r) (Branch 1' r') =

zipTree 1 1' >>= \1'' ->
zipTree r r' >>= \r'' ->
return (Branch 1'' r'')

zipTree = Nothing

Back to node numbering...

number (Leaf a) s =|(Leaf s,s+l)

This is how we use a
value

number (Branch 1l r) s =
let (1',s' = number 1 s
r',s = n

(Branch 1' r',s'")

in

This is how we return a
value

return x
(x >>= £)

\S -> (xls)
\s -> let (a,s’) = x s in £ a s’

Node numbering revisited

number (Leaf a) s = (Leaf s,s+l)
number (Branch 1 r) s =

let (1',s') = number 1 s
(r',s'') = number r s' ...all the nasty state
in (Branch 1' r',s'') manipulation is

gone

number (Branch 1 r) = number 1 >>= \1’' ->
number r >>= \r’ ->
return (Branch 1’ r’)

number (Leaf a) = tick >>= \s ->
return (Leaf s)

tick s = (s,s+1) Apart from in tick...

What are the types?

return x = \s -> (x,s)
(x >>= £f) = \s -> let (a,s’)

return :: a -> s -> (a,s)

(>>=) :: (s -> (a,s)) >
(a -=> s -> (b,s)) ->
s -> (b, s)

type State s a = s -> (a,s)

= x s 1n £ a s’

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b)
Compare to:

return :: a -> Maybe a

(>>=) : : Maybe a -> (a -> Maybe b)

-> State s b

-> Maybe

b

The Common Pattern

class Monad m where
return :: a -> m a
(>>=) ::ma -> (a->mb) ->mb

instance Monad Maybe where ..

instance Monad (State s) where ..

* mais acomputation delivering type a
* return converts a value into a computation
e (>>=) sequences two computations

Example: Random Generation

* Programs using randomness must pass around
a seed:

[] ll_o
next :: StdGen -> (Int,StdGe HEEE:

split :: StdGen -> (StdGen, St each
generator its
randomInt bound seed = own seed

let (n,seed') = next seed in »

randomPair randomFst randomSnd seed =
let (seedl,seed2) = split seed in
(randomFst seedl, randomSnd seed2)

e.g. randomPair (randomInt 3) (randomInt 3) s;

2> (2,1)

A Random List Generator

randomList randomEl seed =
let (seedl,seed2) = split seed in
case randomInt 5 seedl of
0 -> []
>
let (seed3,seed4) = split seed2 in
randomEl seed3 : randomList randomEl seed4

AR

AN

A Random Monad

type Random a = StdGen -> a

instance Monad Random where
return a = \seed -> a
x >>= f = \seed ->
let (seedl,seed2) = split seed
a X seedl
in £ a seed2)

generate :: Random Int
generate = \seed -> fst (next seed)

newtype Random a =
MkRandom {unRandom

instance Monad Random where

return a = (\seed -> a)
x >>= f = (\seed ->
let (seedl,seed2) = split seed
a = X seedl
in (f a) seed2)
generate :: Random Int

generate = (\seed -> fst (next seed))

Random Lists Revisited

randomList randomEl seed = ’tﬂ:
let (seedl,seed2) = split seed in
case randomInt 5 seedl of /{D\
0 -> []
->

~ let (seed3,seed4) = split seed2 in
randomEl seed3 : randomlList randomEl seed4

randomList randomEl =

randomInt 5 >>= \n -> This is (almost)

case n of the Gen monad

0 -> return [] in QuickCheck
-> randomEl >>=

randomList randomEl >>= \xs ->
return (x:xs)

Example: Changing the World

 Wouldn’t it be great if we could change the
world with functional programs?

putStr :: String -> World -> World

— A really nice way tc :
Can’t duplicate

the real world

Can’t discard

* There’s a problem: the real world

let wl = first method world
w2 = second method worls
in 1if nicer wl w2 then wl else w2

We need to enforce linearity!

The 10 Monad: Enforcing Linearity

newtype IO a = MkKIO (World -> (a,World))

The programmer

Haskell main ¥& cannot call a
programs are 10 World-> fun... but
computations : the RTS can, then

All 10 a
computations
use the World

linearly

updates the World

itives...

— ...which use the world linearly
— You can’t "get rid of that pesky 10 type”

I’'m referentially
transparent! You
ain’t got nuthin on
me—it was the run-
time system wot

dun it!

The Big Picture

class Monad

return
>>=

Common

State: tick

Maybe: Nothing

Random: generate

1O: putStr

Special

operations

operations

What’s the advantage of common
plumbing?

e Libraries that work with all monads

* Syntactic support

Libraries: Control.Monad

* For example:

liftM2 :: Monad m => (a->b->¢c) ->m a ->mb ->mc
liftM2 f ma mb =
ma >>= \a -> A monad is a

mb >>= \b ->
return (f a b)

functor ©

liftM :: Monad m => (a->b) ->m a ->mb

sequence :: Monad m => [m a] -> m [a]
sequence = foldr (liftM2 (:)) (return [])

Syntactic Support

* Instead of pa >>= \a ->

mb >>= \b ->
return (f a b)

* We write do a <- ma
b <- mb
return (f a b)

do

do

do

Rewriting do

pat <- expr
block

expr
block

expr

—

=)

=)

expr >>=
do block

expr >>=
do block

expr

\pat ->

Revisiting zipTree... again

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))
zipTree (Leaf a) (Leaf b) =

return (Leaf (a,b))
zipTree (Branch 1 r) (Branch 1' r') =

zipTree 1 1' >>= \1'' ->

zipTree r r' >>= \r'' ->

return (Branch 1'' r'')
zipTree = Nothing

zipTree (Leaf a) (Leaf b) =

return (Leaf (a,b))
zipTree (Branch 1 r) (Branch 1’ r’) =

1iftM2 Branch (zipTree 1 1’) (zipTree r r')
zipTree = Nothing

Revisiting node humbering... again

number (Branch 1l r) = number 1 >>= \1’' ->
number r >>= \r’ ->
return (Branch 1’ r’)
number (Leaf a) = tick >>= \s ->
return (Leaf s)

number (Branch 1 r) =

1liftM2 Branch (number 1) (number r)
number (Leaf a) =

l1iftM Leaf tick

"Associative” do-notation begs the

guestion...
do x <- el do x <- el
y <- e2 — do y <- e2
e3 e3

? do y <- do x <- el

e2
® e3

What about return?

do x <- e —?e
_.

return x

do y <- return x —? f x
fy

The Monad Laws

e After desugaring:

return x >=f = f x
m >>= return == m
(m>>= f) >=g == m>>= \x -> £ x >>=g

* Do they hold for our monads??

e E.g. for State s

return x >>= |

\s -> let (x’,s’) = return x s in

\s > | x s

\s -> |
/=
1

1 x

NO!!!

e For Random

Use different
randomInt 5
:l— seeds to
generate the
Int!

randomInt 5 >>= return

Yes... near enough

 For total values

— (Fast and loose reasoning is morally correct)

* Up to a reasonable equivalence

— Same distribution in the case of Random

Testing the Monad Laws

e Let’s use QuickCheck to test our monads!

* QuickCheck tests properties written as
monomorphic functions

prop Rev, prop RevRev :: [Integer] -> Bool
prop Rev xs = reverse Xs == XS
prop RevRev xs reverse (reverse xXs) == Xs

* QuickCheck tests using random arguments

*Lecturel> quickCheck prop RevRev
+++ OK, passed 100 tests.
*Lecturel> quickCheck prop Rev
*** Failed! Falsifiable (after 4 tests and 2 shrinks):
[0,1]

QuickCheck Constraints

* Property arguments must be

— In class Arbitrary (can be generated)

class Arbitrary a where
arbitrary :: Gen a

— In class Show (can be printed)
* Functions are not printable, but QuickCheck
Fun values are, and contain a function

Fun f :: Fun a b

The Monad Laws as Properties

* We state generic laws...
prop LeftUnit x (Fun _ f) =

(return x >>= f) == £ x
prop RightUnit m =
(m >>= return) == m
prop Assoc m (Fun f) (Fun g) =
((m >>= £f) >>=g) == (m >>= \x -> £ x >>= q)
e ...and test particular instances
prop MaybeAssoc :: Maybe Integer ->

Fun Integer (Maybe Integer) ->

Fun Integer (Maybe Integer) ->
Bool

prop MaybeAssoc = prop Assoc

Testing

e Of course, the tests pass

*MonadLaws> quickCheck prop MaybeAssoc
+++ OK, passed 100 tests.

* Butif we swap fand g on one side of
prop Assoc, to get a property that is false...

*MonadLaws> quickCheck prop MaybeAssoc
*** Failed! Falsifiable (after 8 tests and 11 shrinks):

Just 0O n
B :

{ _—->Just 0}
{ _->Just 1}

Exercises

