
Monads and all that…
I. Monads

John Hughes

Chalmers University/Quviq AB

Binary Trees in Haskell

• Cf Coq:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

 deriving (Eq,Show)

Inductive tree (A:Set) : Set :=

 | leaf : A -> tree A

 | branch : tree A -> tree A -> tree A

t = Branch (Leaf “a”)

 (Branch (Leaf “b”)

 (Leaf “c”))

”a”

”b” ”c”

Mapping over Trees

• Tree is a functor!

treeMap f (Leaf a) = Leaf (f a)

treeMap f (Branch l r) =

 Branch (treeMap f l) (treeMap f r)

treeMap toUppers t
Branch (Leaf "A")

 (Branch (Leaf "B")

 (Leaf "C"))

treeMap :: (t -> a) -> Tree t -> Tree a

Functors in Haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

instance Functor Tree where

 fmap f (Leaf a) = Leaf (f a)

 fmap f (Branch l r) = Branch (fmap f l) (fmap f r)

fmap toUppers t
Branch (Leaf "A")

 (Branch (Leaf "B")

 (Leaf "C"))

Label Nodes with DFO Index

”a”

”b” ”c”

 1

 2 3

number (Leaf a) = Leaf (tick ())

number (Branch l r) = Branch (number l) (number r)

number (Leaf a) s = (Leaf s,s+1)

number (Branch l r) s =

 let (l',s') = number l s

 (r',s'') = number r s'

 in (Branch l' r',s'')

Error prone

Zipping Trees

zipTree :: Tree a -> Tree b -> Tree (a,b)

”a”

”b” ”c”

 1

 2 3

(1,”a”)

(2,”b”) (3,”c”)

zipTree (Leaf a) (Leaf b) =

 Leaf (a,b)

zipTree (Branch l r) (Branch l' r') =

 Branch (zipTree l l') (zipTree r r')

… catch (zipTree t1 t2) …

BUT what if…

• Easy to solve:

*Lecture1> zipTree (Leaf "a") (Branch (Leaf "b") (Leaf "c"))

*** Exception: Lecture1.hs:(31,1)-(32,74): Non-exhaustive

patterns in function zipTree

zipTree (Leaf a) (Leaf b) =

 Leaf (a,b)

zipTree (Branch l r) (Branch l' r') =

 Branch (zipTree l l') (zipTree r r')

zipTree _ _ = throw TreesOfDifferentShape

Modelling Exceptions

 data Maybe a = Nothing | Just a

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 Just (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 case zipTree l l' of

 Nothing -> Nothing

 Just l'' ->

 case zipTree r r' of

 Nothing -> Nothing

 Just r'' ->

 Just (Branch l'' r'')

zipTree _ _ = Nothing

Effect Envy

Do we need to use effects to write
modular code??

Let’s examine the code…

 zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 Just (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 case zipTree l l' of

 Nothing -> Nothing

 Just l'' ->

 case zipTree r r' of

 Nothing -> Nothing

 Just r'' ->

 Just (Branch l'' r'')

zipTree _ _ = Nothing

This is how we return a
value:

Just <expr>

This is how we use a
value

Let’s abstract the common parts

Just (Leaf (a,b))

Just x

return x = Just x

return :: a -> Maybe a

case zipTree l l' of

 Nothing -> Nothing

 Just l'' -> …

case x of

 Nothing -> Nothing

 Just l'' -> f l''

x >>= f =

 case x of

 Nothing -> Nothing

 Just l'' -> f l''

(>>=) :: Maybe a ->

 (a -> Maybe b) ->

 Maybe b

”bind”

”use x in f”

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 Just (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 case zipTree l l' of

 Nothing -> Nothing

 Just l'' ->

 case zipTree r r' of

 Nothing -> Nothing

 Just r'' ->

 Just (Branch l'' r'')

zipTree _ _ = Nothing

Revisiting the code

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 case zipTree l l' of

 Nothing -> Nothing

 Just l'' ->

 case zipTree r r' of

 Nothing -> Nothing

 Just r'' ->

 return (Branch l'' r'')

zipTree _ _ = Nothing

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 zipTree l l' >>=

 \l'' ->

 case zipTree r r' of

 Nothing -> Nothing

 Just r'' ->

 return (Branch l'' r'')

zipTree _ _ = Nothing

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 zipTree l l' >>=

 \l'' ->

 zipTree r r' >>=

 \r'' ->

 return (Branch l'' r'')

zipTree _ _ = Nothing

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 zipTree l l' >>= \l'' ->

 zipTree r r' >>= \r'' ->

 return (Branch l'' r'')

zipTree _ _ = Nothing

Back to node numbering…

 number (Leaf a) s = (Leaf s,s+1)

number (Branch l r) s =

 let (l',s') = number l s

 (r',s'') = number r s'

 in (Branch l' r',s'')

This is how we return a
value

This is how we use a
value

return x s = (x,s)

return x = \s -> (x,s)

return x = \s -> (x,s)

(x >>= f) = \s -> let (a,s’) = x s in f a s’

Node numbering revisited

number (Branch l r) = number l >>= \l’ ->

 number r >>= \r’ ->

 return (Branch l’ r’)

number (Leaf a) = tick >>= \s ->

 return (Leaf s)

tick s = (s,s+1)

number (Leaf a) s = (Leaf s,s+1)

number (Branch l r) s =

 let (l',s') = number l s

 (r',s'') = number r s'

 in (Branch l' r',s'')

Apart from in tick…

…all the nasty state
manipulation is

gone

What are the types?

return x = \s -> (x,s)

(x >>= f) = \s -> let (a,s’) = x s in f a s’

return :: a -> s -> (a,s)

(>>=) :: (s -> (a,s)) ->

 (a -> s -> (b,s)) ->

 s -> (b,s)

type State s a = s -> (a,s)

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b) -> State s b

Compare to:
return :: a -> Maybe a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

The Common Pattern

• m a is a computation delivering type a

• return converts a value into a computation

• (>>=) sequences two computations

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where …

instance Monad (State s) where …

Example: Random Generation

• Programs using randomness must pass around
a seed:

 next :: StdGen -> (Int,StdGen)

split :: StdGen -> (StdGen,StdGen)

randomInt bound seed =

 let (n,seed') = next seed in n `mod` bound

randomPair randomFst randomSnd seed =

 let (seed1,seed2) = split seed in

 (randomFst seed1, randomSnd seed2)

No need to
return a

new seed…

…if we give
each

generator its
own seed

e.g. randomPair (randomInt 3) (randomInt 3) s1
 (2,1)

A Random List Generator

 randomList randomEl seed =

 let (seed1,seed2) = split seed in

 case randomInt 5 seed1 of

 0 -> []

 _ ->

 let (seed3,seed4) = split seed2 in

 randomEl seed3 : randomList randomEl seed4

A Random Monad

 type Random a = StdGen -> a

instance Monad Random where

 return a = \seed -> a

 x >>= f = \seed ->

 let (seed1,seed2) = split seed

 a = x seed1

 in f a seed2)

generate :: Random Int

generate = \seed -> fst (next seed)

generate :: Random Int

generate = \seed -> fst (next seed)

instance Monad Random where

 return a = \seed -> a

 x >>= f = \seed ->

 let (seed1,seed2) = split seed

 a = x seed1

 in f a seed2)

A Random Monad

 newtype Random a =
 MkRandom {unRandom :: StdGen -> a}

Constructor Destructor

instance Monad Random where

 return a = MkRandom (\seed -> a)

 x >>= f = MkRandom (\seed ->

 let (seed1,seed2) = split seed

 a = unRandom x seed1

 in unRandom (f a) seed2)

generate :: Random Int

generate = MkRandom (\seed -> fst (next seed))

Random Lists Revisited

 randomList randomEl seed =

 let (seed1,seed2) = split seed in

 case randomInt 5 seed1 of

 0 -> []

 _ ->

 let (seed3,seed4) = split seed2 in

 randomEl seed3 : randomList randomEl seed4

randomList randomEl =

 randomInt 5 >>= \n ->

 case n of

 0 -> return []

 _ -> randomEl >>= \x ->

 randomList randomEl >>= \xs ->

 return (x:xs)

This is (almost)
the Gen monad
in QuickCheck

Example: Changing the World

• Wouldn’t it be great if we could change the
world with functional programs?

– A really nice way to express I/O

• There’s a problem:

putStr :: String -> World -> World

let w1 = first_method world

 w2 = second_method world

in if nicer w1 w2 then w1 else w2

Can’t duplicate
the real world

Can’t discard
the real world

We need to enforce linearity!

The IO Monad: Enforcing Linearity

• This is a monad, just like State s earlier

– return and >>= use the world linearly

• The IO type is abstract

– IO a can only be built from IO primitives…

– …which use the world linearly

– You can’t ”get rid of that pesky IO type”

newtype IO a = MkIO (World -> (a,World))

All IO a
computations
use the World

linearly

Haskell main
programs are IO

computations

The programmer
cannot call a

World-> fun… but
the RTS can, then

updates the World

:=

I’m referentially
transparent! You

ain’t got nuthin on
me—it was the run-

time system wot
dun it!

The Big Picture

class Monad
return

>>=

State: tick

Maybe: Nothing

Random: generate

IO: putStr …
 Common

operations
Special

operations

What’s the advantage of common
plumbing?

• Libraries that work with all monads

• Syntactic support

Libraries: Control.Monad

• For example:
liftM2 :: Monad m => (a->b->c) -> m a -> m b -> m c

liftM2 f ma mb =

 ma >>= \a ->

 mb >>= \b ->

 return (f a b)

liftM :: Monad m => (a->b) -> m a -> m b

sequence :: Monad m => [m a] -> m [a]

sequence = foldr (liftM2 (:)) (return [])

A monad is a
functor

Syntactic Support

• Instead of

• We write

ma >>= \a ->

mb >>= \b ->

return (f a b)

do a <- ma

 b <- mb

 return (f a b)

Rewriting do

do pat <- expr

 block

expr >>= \pat ->

do block

do expr

 block

expr >>= _ ->

do block

do expr expr

Revisiting zipTree… again

zipTree :: Tree a -> Tree b -> Maybe (Tree (a,b))

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l' r') =

 zipTree l l' >>= \l'' ->

 zipTree r r' >>= \r'' ->

 return (Branch l'' r'')

zipTree _ _ = Nothing

zipTree (Leaf a) (Leaf b) =

 return (Leaf (a,b))

zipTree (Branch l r) (Branch l’ r’) =

 liftM2 Branch (zipTree l l’) (zipTree r r’)

zipTree _ _ = Nothing

Revisiting node numbering… again

 number (Branch l r) = number l >>= \l’ ->

 number r >>= \r’ ->

 return (Branch l’ r’)

number (Leaf a) = tick >>= \s ->

 return (Leaf s)

number (Branch l r) =

 liftM2 Branch (number l) (number r)

number (Leaf a) =

 liftM Leaf tick

”Associative” do-notation begs the
question…

do x <- e1

 y <- e2

 e3

do x <- e1

 do y <- e2

 e3

do y <- do x <- e1

 e2

 e3

=

=?

What about return?

do x <- e

 return x

e

do y <- return x

 f y

f x =?

=?

The Monad Laws

• After desugaring:

• Do they hold for our monads??

return x >>= f

m >>= return

(m >>= f) >>= g

f x

m

m >>= \x -> f x >>= g

==

==

==

NO!!!

• E.g. for State s

return x >>= |

==

\s -> let (x’,s’) = return x s in | x’ s’

==

\s -> | x s

==

\s -> |

/=
|

==

| x

NO!!!

• For Random

randomInt 5

randomInt 5 >>= return

Use different
seeds to

generate the
Int!

Yes… near enough

• For total values

– (Fast and loose reasoning is morally correct)

• Up to a reasonable equivalence

– Same distribution in the case of Random

Testing the Monad Laws

• Let’s use QuickCheck to test our monads!

• QuickCheck tests properties written as
monomorphic functions

• QuickCheck tests using random arguments

prop_Rev, prop_RevRev :: [Integer] -> Bool

prop_Rev xs = reverse xs == xs

prop_RevRev xs = reverse (reverse xs) == xs

*Lecture1> quickCheck prop_RevRev

+++ OK, passed 100 tests.

*Lecture1> quickCheck prop_Rev

*** Failed! Falsifiable (after 4 tests and 2 shrinks):

[0,1]

QuickCheck Constraints

• Property arguments must be

– In class Arbitrary (can be generated)

– In class Show (can be printed)

• Functions are not printable, but QuickCheck
Fun values are, and contain a function

class Arbitrary a where

 arbitrary :: Gen a

Fun _ f :: Fun a b

The Monad Laws as Properties

• We state generic laws…

• …and test particular instances

prop_LeftUnit x (Fun _ f) =

 (return x >>= f) == f x

prop_RightUnit m =

 (m >>= return) == m

prop_Assoc m (Fun _ f) (Fun _ g) =

 ((m >>= f) >>= g) == (m >>= \x -> f x >>= g)

prop_MaybeAssoc :: Maybe Integer ->

 Fun Integer (Maybe Integer) ->

 Fun Integer (Maybe Integer) ->

 Bool

prop_MaybeAssoc = prop_Assoc

Testing

• Of course, the tests pass

• But if we swap f and g on one side of
prop_Assoc, to get a property that is false…

*MonadLaws> quickCheck prop_MaybeAssoc

+++ OK, passed 100 tests.

*MonadLaws> quickCheck prop_MaybeAssoc

*** Failed! Falsifiable (after 8 tests and 11 shrinks):

Just 0

{_->Just 0}

{_->Just 1}

f

g

Exercises

